Aufgaben zum Tut am 30.01.2006

Thomas Pajor

29. Januar 2006

Aufgabe 1)

Gegeben sei folgende kontextfreie Grammatik $G := (V := \{S\}, \Sigma := \{(,)\}, P, S)$ mit

$$P := \{ S \to SS, \tag{1}$$

$$S \to (S),$$
 (2)

$$S \to () \} \tag{3}$$

- (a) Wandeln Sie G in Chomsky–Normalform G'.
- (b) Prüfen Sie mit dem Algorithmus von COCKE-YOUNGER-KASAMI ob die Wörter $w_1 := ()()(())$ und $w_2 := ()())$ in L(G) enthalten sind und geben Sie ggf. eine Ableitungsfolge $S \stackrel{*}{\Rightarrow} w$ an.
- (c) Geben Sie einen nichtdeterministischen Kellerautomaten $\mathcal K$ an, der L(G) mit leerem Keller akzeptiert.
- (d) Geben Sie eine Folge von Konfigurationen auf K an, so dass das Wort w_1 akzeptiert wird.

Lösung.

- (a) siehe letzte Woche
- (b) siehe letzte Woche
- (c) Wir konstruieren aus G einen NKA $\mathcal{K} = (\{z\}, \Sigma, \Sigma \cup V, \delta, z, S)$ mit einem Zustand z, wobei δ durch folgende Tabelle definiert wird:

$$\begin{array}{c|cccc} (z,\downarrow,\to) & S & (&) \\ \hline \varepsilon & \{SS,(S),()\} & \{\} & \{\} \\ (& \{\} & \{\varepsilon\} & \{\} \\) & \{\} & \{\} & \{\varepsilon\} \end{array}$$

(d) Betrachte folgende Ableitungsfolge von w_1 in G:

$$S \Rightarrow SS \Rightarrow ()S \Rightarrow ()SS \Rightarrow ()(SS \Rightarrow ()()S \Rightarrow ()()(S) \Rightarrow ()()(())$$

Wir konstruieren zu dieser Ableitungsfolge eine Folge von Konfigurationen für den NKA \mathcal{K} :

$$(z, ()()(()), S) \rightarrow (z, ()()(()), SS)$$

$$\rightarrow (z, ()()(()), ()S)$$

$$\stackrel{?}{\rightarrow} (z, ()(()), S)$$

$$\rightarrow (z, ()(()), SS)$$

$$\rightarrow (z, ()(()), ()S)$$

$$\stackrel{?}{\rightarrow} (z, (()), S)$$

$$\rightarrow (z, (()), (S))$$

$$\rightarrow (z, (()), (S))$$

$$\rightarrow (z, ()), S)$$

$$\rightarrow (z, ()), S)$$

$$\rightarrow (z, ()), S)$$

$$\rightarrow (z, ()), S)$$

Aufgabe 2)

Gegeben sei die Sprache $L := \{a^n b^n \mid n > 0\}$ über $\Sigma := \{a, b\}$.

- (a) Ist L deterministisch kontextfrei?
- (b) Geben Sie einen deterministischen Kellerautomaten \mathcal{K} mit $\mathcal{L}(\mathcal{K}) = L$ an.
- (c) Sei nun L eine beliebige deterministisch kontextfreie Sprache und R eine reguläre Sprache. Beweisen oder widerlegen Sie: $L \cap R$ ist regulär.

Lösung.

- (a) Ja, L ist deterministisch kontextfrei. Beweis siehe (b).
- (b) Wir konstruieren einen deterministischen Kellerautomat $\mathcal{K} = (Q, \Sigma, \Gamma := \{X, \#\}, \delta, s, \#, F)$ wobei Q, s, F, δ durch den Übergangsgraph in Abbildung (1) definiert werden.

Der Automat legt für jedes gelesene a ein X auf den Keller. Sobald ein b gelesen wird, wechselt er den Zustand, und löscht für jedes gelesene b wieder ein X vom Keller. Offenbar akzeptiert K genau dann mit leerem Stack und Endzustand, wenn das Eingabewort die Form a^nb^n hat.

(c) Sei L wieder $L := \{a^n b^n \mid n > 0\}$ eine deterministisch kontextfreie Sprache, die nicht regulär ist. Weiterhin sei $R := \{a\}^* \{b\}^*$ eine offenbar reguläre Sprache. Es gilt nun

$$L \subsetneqq R$$

und damit folgt $L \cap R = \{a^n b^n \mid n > 0\} = L$.

Also ist $L \cap R$ im Allgemeinen nicht regulär.

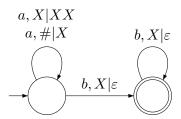


Abbildung 1: Deterministischer Kellerautomt der a^nb^n akzeptiert.