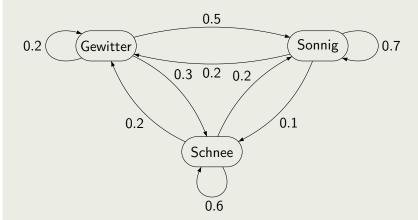
Info IV Tutorium

Thomas Pajor


ITEC Dillmann ITEC Beyerer

03. Juli 2006

Aufgabe 1.

Einfaches Wettermodell

Gegeben sei folgender Wahrscheinlichkeitsübergangsgraph

Aufgabe 1.

Aufgabe

Gegeben sei der Graph der vorangegangenen Folie. Ein Übergang $n \rightsquigarrow n+1$ entspreche dem Zeitintervall von einer Stunde.

- (a) Leiten Sie die Wahrscheinlichkeitsübergangsmatrix her. Was ist \mathfrak{X} ?
- (b) Angenommen es ist sonniges Wetter. Wie ist das Wetter nach 2 Stunden am wahrscheinlichsten?
- (c) Bestimmen Sie eine stationäre Wahrscheinlichkeitsverteilung des Wetters.

Definitionen

Ein betrunkener Mann läuft nachts durch die Stadt.

Definitionen

Ein betrunkener Mann läuft nachts durch die Stadt.

▶ Sei G = (V, E) mit $|V| = \{1, ..., m\}$ und |E| = e ein ungerichteter Graph.

Definitionen

Ein betrunkener Mann läuft nachts durch die Stadt.

- ▶ Sei G = (V, E) mit $|V| = \{1, ..., m\}$ und |E| = e ein ungerichteter Graph.
- ▶ Ein Random Walk auf G ist eine Sequenz $X_1, X_2, ...$ von Knoten von G die der Mann abläuft.

Definitionen

Ein betrunkener Mann läuft nachts durch die Stadt.

- ▶ Sei G = (V, E) mit $|V| = \{1, ..., m\}$ und |E| = e ein ungerichteter Graph.
- ▶ Ein Random Walk auf G ist eine Sequenz X_1, X_2, \ldots von Knoten von G die der Mann abläuft.
- ▶ Die Übergangswahrscheinlichkeit von einem Knoten i in einen Knoten j ist gegeben durch

$$p(j|i) = \begin{cases} \frac{1}{d(i)} & \text{falls } ij \in E \\ 0 & \text{sonst} \end{cases}$$

Aufgabe

Sei G = (V, E) ein Graph auf dem wir einen Random Walk durchführen.

(a) Verifizieren Sie, dass die stationäre Verteilung $\mu = (\mu_1, \dots, \mu_m)$ durch

$$\mu_i = \frac{d(i)}{2e}$$

gegeben ist.

(b) Berechnen Sie die Entropierate für diesen Markov Prozess.